Heparan sulfate regulates hair follicle and sebaceous gland morphogenesis and homeostasis.

نویسندگان

  • Vivien Jane Coulson-Thomas
  • Tarsis Ferreira Gesteira
  • Jeffrey Esko
  • Winston Kao
چکیده

Hair follicle (HF) morphogenesis and cycling are a result of intricate autonomous epithelial-mesenchymal interactions. Once the first HF cycle is complete it repeatedly undergoes cyclic transformations. Heparan sulfate (HS) proteoglycans are found on the cell surface and in the extracellular matrix where they influence a variety of biological processes by interacting with physiologically important proteins, such as growth factors. Inhibition of heparanase (an HS endoglycosidase) in in vitro cultured HFs has been shown to induce a catagen-like process. Therefore, this study aimed to elucidate the precise role of HS in HF morphogenesis and cycling. An inducible tetratransgenic mouse model was generated to excise exostosin glycosyltransferase 1 (Ext1) in keratin 14-positive cells from P21. Interestingly, EXT1(StEpiΔ/StEpiΔ) mice presented solely anagen HFs. Moreover, waxing the fur to synchronize the HFs revealed accelerated hair regrowth in the EXT1(StEpiΔ/StEpiΔ) mice and hindered cycling into catagen. The ablation of HS in the interfollicular epidermal cells of mature skin led to the spontaneous formation of new HFs and an increase in Sonic Hedgehog expression resembling wild-type mice at P0, thereby indicating that the HS/Sonic Hedgehog signaling pathway regulates HF formation during embryogenesis and prevents HF formation in mature skin. Finally, the knock-out of HS also led to the morphogenesis and hyperplasia of sebaceous glands and sweat glands in mature mice, leading to exacerbated sebum production and accumulation on the skin surface. Therefore, our findings clearly show that an intricate control of HS levels is required for HF, sebaceous gland, and sweat gland morphogenesis and HF cycling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Doxorubicin-induced alopecia is associated with sebaceous gland degeneration.

Alopecia, accompanied by skin dryness, is one of the distressing side effects often occurring in chemotherapy-treated cancer patients. Little is known of the effects of chemotherapy on sebaceous glands, despite their importance in hair follicle homeostasis. This study investigates sebaceous gland morphology and the response of SZ95 sebaceous gland cell line to doxorubicin (DXR) treatment. The m...

متن کامل

Smad7-induced beta-catenin degradation alters epidermal appendage development.

To assess whether Smad signaling affects skin development, we generated transgenic mice in which a Smad antagonist, Smad7, was induced in keratinocytes, including epidermal stem cells. Smad7 transgene induction perturbed hair follicle morphogenesis and differentiation, but accelerated sebaceous gland morphogenesis. Further analysis revealed that independent of its role in anti-Smad signaling, S...

متن کامل

Development and homeostasis of the skin epidermis.

The skin epidermis is a stratified epithelium that forms a barrier that protects animals from dehydration, mechanical stress, and infections. The epidermis encompasses different appendages, such as the hair follicle (HF), the sebaceous gland (SG), the sweat gland, and the touch dome, that are essential for thermoregulation, sensing the environment, and influencing social behavior. The epidermis...

متن کامل

BLIMP1 Is Required for Postnatal Epidermal Homeostasis but Does Not Define a Sebaceous Gland Progenitor under Steady-State Conditions

B-lymphocyte-induced nuclear maturation protein 1 (BLIMP1) was previously reported to define a sebaceous gland (SG) progenitor population in the epidermis. However, the recent identification of multiple stem cell populations in the hair follicle junctional zone has led us to re-evaluate its function. We show, in agreement with previous studies, that BLIMP1 is expressed by postmitotic, terminall...

متن کامل

Activated Hair Follicle Stem Cells and Wnt/β-catenin Signaling Involve in Pathnogenesis of Sebaceous Neoplasms

Sebaceous glands (SGs) undergo cyclic renewal independent of hair follicle stem cells (HFSCs) activation while HFSCs have the potential to differentiate into sebaceous gland cells, hair follicle and epidermal keratinocytes. Abnormalities of sebaceous gland progenitor cells contribute to the development of sebaceous neoplasms, but little is known about the role of HFSCs during sebaceous neoplasm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 289 36  شماره 

صفحات  -

تاریخ انتشار 2014